Journal of Organometallic Chemistry, 121 (1976) C57–C60 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

FORMATION OF CATIONIC AND NEUTRAL CARBAMATO AND RELATED RUTHENIUM(II) COMPLEXES FROM REACTION OF CO₂, COS AND CS₂ WITH RUTHENIUM HYDRIDES IN ALCOHOL SOLUTION CONTAINING HNMe₂. THE CRYSTAL STRUCTURE OF [Ru(O₂CNMe₂)-(PMe₂Ph)₄]PF₆

TERENCE V. ASHWORTH, MAGRIET NOLTE and ERIC SINGLETON*

National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria 0002 (Republic of South Africa)

(Received September 8th, 1976)

Summary

The salts $[Ru(XYCR)(PMe_2Ph)_4]PF_6$ (XY = OS, R = OEt; XY = S₂, R = H), $[Ru(XYCNMe_2)(PMe_2Ph)_4]PF_6$ (XY = O₂, OS, S₂) and the neutral product $[RuH(O_2CNMe_2)(PPh_3)_3]$ are formed by interaction of CO₂, COS or CS₂ with $[RuH(PMe_2Ph)_5]PF_6$ or $[RuH_2(PPh_3)_4]$ in ethanol or ethanol/dimethylamine mixtures; the crystal structure of $[Ru(O_2CNMe_2)(PMe_2Ph)_4]PF_6$ has been determined.

A number of transition metal complexes have been reported [1] to catalyse the conversion of amines, CO_2 and H_2 into formamides at high pressures (54 atm) and high temperatures (100-125°C). No single mechanism was proposed for this reaction, although certain intermediates, in particular metal carbamato complexes were excluded, and a reaction scheme involving attack of HNMe₂ on a metal formato complex was said to be consistent with deuteration studies. However, we have now found that ruthenium formates, prepared from reactions either of formic acid or carbon dioxide with ruthenium hydrides give ruthenium carbamato complexes with HNMe₂. Similar reactions with COS and CS₂ produce corresponding thio and dithiocarbamato compounds.

Refluxing ethanol solutions of $[RuH(PMe_2Ph)_5]PF_6$ (I) containing excess HNMe₂ reacted with CO₂, COS and CS₂ to deposit $[Ru(XYCNMe_2)(PMe_2Ph)_4]$ -PF₆ (II) (XY = O₂, OS, S₂) on cooling. Reaction of $RuH_2(PPh_3)_4$ with CO₂ gave the neutral product $RuH(O_2CNMe_2)(PPh_3)_3$ (III). In the absence of dimethylamine, (I) and COS or CS₂ produced the formato salts $[Ru(XYCH)(PMe_2Ph)_4]$ -PF₆ (IV) (XY = OS, S₂) from cold ethanol solutions, whereas with CO₂ the

^{*}To whom correspondence should be addressed.

TABLE 1

RELEVANT SPECTROSCOPIC DATA OF COMPOUNDS II AND III

W GIVE IN GRUDO TO WING OF SOME OF STATES						
Compound	M.p. (°C)	M.p. (°C) IR data ^d (cm ⁻¹)	¹ H NMR data ^b (7 values, J [*] in Hz)	alues, J [*] in Hz)		
			trans-P(CH ₃) ₂ Ph cis-P(CH ₃) ₂ Ph N(CH ₃) ₂	cis-P(CH3) Ph	N(CH ₃) ₂	Other
[Ru(O ₂ CNMe ₂)(PMe ₂ Ph) ₄]PF ₆ 180–184	180184	1565 vs, 1465 s, 1412 s, 1270 s	8.51 t, <i>J</i> [*] 6.5	8.25 pt, J * 8.5 7.53 s	7,63 s	
[Ru(OSCNMe ₂)(PMe ₂ Ph) ₄]PF ₆	160-162	1 570 vs	8,70 t, J* 6.0 8,27 t, J* 6.0	8,20 d, J 8,0 7.95 d, J 8,0	7,69 s	
[Ru(S ₃ CNMe ₃)(PMe ₄ Ph),]PF,	146148	1530 m, 1398 m	8,62 bs	8.10 bs	7.47 s	
[Ru(OSCH)(PMe ₂ Ph) ₄]PF ₆	97101	1480 s, 1380 m	8.69 t, J [*] 6,0 8.33 t, J [*] 6,0	8,25 d, J 8,0 8,01 d, J 8,0		1.23 m OSCH
[Ru(OSCOMe)(PMe2Ph)4]PF6	175-178	1532 vs, 1430 m, 1235 vs	8.72 t, J* 6.0 8.25 t, J* 6.0	8,17 d, J 8,0 7,93 d, J 8,0		7.83 s OCH ₃
[Ru(OSCOEt)(PMe ₂ Ph) ₄]PF ₆	163—167	1528 s, 1478 w, 1232 vs	8,72 t, J [*] 6.0 8.25 t, J [*] 6.0	8.17 d, J 8,0 7.93 d. J 8,0		9.36 t, 7.66 q J 7.0 OEt
[Ru(S ₂ CH)(PMe ₂ Ph) ₄]PF ₆ ^c	180	vibrations	8,5 bs	8.0 bs		Resonance of S ₃ CH proton not observed
RuH(O ₁ CNMc ₃)(PPh ₃)3 ^d	122126	1538 s, 1502 w, 1403 s, 1272 s				
$a_{y_s}^{d}$ vs, very strong; s, strong; m, medium; w, weak; characteristic of the anionic ligand.	edium; w, wea	k; characteristic of th	le anionic ligand.		4	

^bMeasured in CD₂Ol₂ solution; t, triplet; pt, partial triplet; s, singlet; d, doublet; bs, broad singlet; m, multiplet. J^{*} separation of the outer two peaks. ^{c1}H NMR recorded at 0°C. ^dv(Ru—H) 1990 (m) cm⁻¹; complex too insoluble to record an ¹H NMR spectrum.

.

· · · · · · · · · · ·

.

monoalkylcarbonates $[Ru(OXCOEt)(PMe_2Ph)_4]PF_6(V)(X = 0)$ are formed [2]. On prolonged boiling in ethanol I and COS gave V (X = S) but IV (XY = S₂) was the sole product from similar reactions with CS₂. The salts IV and V are readily converted into III on treatment with NHMe₂, while RuH(O₂CH)(PPh₃)₃ forms III.

The compounds II and III are stable in the solid but II slowly decomposes in solution in air. III is stable in solution only under an inert atmosphere. Their relevant spectroscopic data are listed in Table 1. To confirm our formulation of these products as carbamato complexes an X-ray diffraction study of $[Ru(O_2CNMe_2)(PMe_2Ph)_4]PF_6$ was undertaken.

Crystal data

[Ru(O₂CNMe₂)(PMe₂Ph)₄]PF₆ (mol. wt. 886.8) forms yellow monoclinic crystals, space group $P2_1/c$, a 14.94(2), b 13.87(2), c 19.43(2) Å, β 91.0(2)°, D_m 1.45, D_c 1.46 g cm⁻³, Z = 4. Intensity data were collected on a Philips automatic four circle diffractometer with Mo- K_{α} radiation (λ 0.7107 Å) and the structure was determined by Patterson and Fourier methods. Refinement by full-matrix least squares using isotropic temperature factors reduced R to 0.117 for the 2201 observed data and the refinement is continuing.

The ruthenium atom has a distorted octahedral geometry and the ligand arrangement is shown in Fig. 1. Some observed bond lengths are *trans*-Ru—P(mean) 2.41(1), *cis*-Ru—P (mean) 2.28(1), Ru—O (mean) 2.22(2), O—C (sp^2) (mean) 1.28(2), N—C (sp^2) 1.31(3) and N—C (sp^3) (mean) 1.45(4) Å. The O₂ CNMe₂ moiety is planar and the bond lengths related to this ligand are similar to those found in two N,N-dimethylcarbamato complexes of early transition metals [3, 4]. The Ru—O bond lengths do not differ significantly from those observed [5] in other acetato- or formato-ruthenium(II) complexes. Distortions within the cation are similar to that found [6] in [Ru(O₂ CMe)(PMe₂Ph)₄]PF₆ and can be ascribed to the *trans* influence of the phosphine ligands, steric repulsion between the phosphine ligands occupying adjacent facial sites and the small ORuO angle (ca. 58°) of the carbamato group.

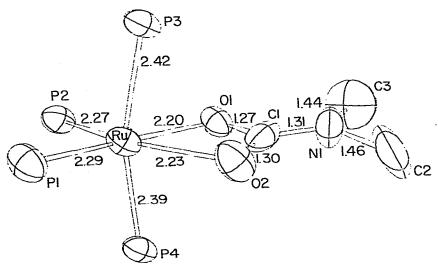
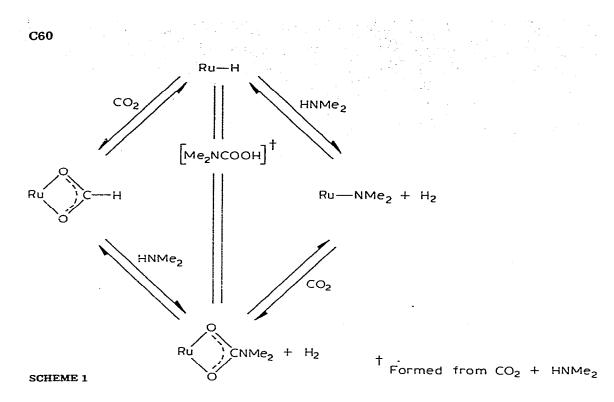



Fig. 1. Ligand arrangement around the ruthenium atom in [Ru(O₂CNMe₂)(PMe₂Ph)₄]PF₆.

We are as yet uncertain as to the mode of formation of carbamato complexes but possible routes are given in Scheme 1. Recent studies [3, 4] have shown that CO_2 rapidly inserts into metal—nitrogen bonds in metal amides to produce mono- and bi-dentate carbamato compounds, and the exchange of CO_2 with $Nb(O_2CNMe_2)_5$ is suggested [4] to occur via the intermediates $Nb(NMe_2)_x$ - $(O_2CNMe_2)_{5-x}$. The ready formation of II from the monoalkylcarbonates (V) may thus occur via the equilibrium $Ru(OXCOEt) \Rightarrow RuOEt + COX (X = O, S)$ in which ruthenium amide formation results from $HNMe_2$ —RuOEt interactions.

We have been unable to form $HCONMe_2$ from reactions of either II or III (XY = O_2) with H_2 under a variety of conditions, and whereas carbamato complexes have been precluded as intermediates in the catalytic conversion of CO_2 , $HNMe_2$ and H_2 to $HCONMe_2$ by deuteration studies, the suggested mechanism involving metal formato—amine reactions now seems improbable, as we expect carbamato intermediates to form by this route. Further studies on these systems are in progress, especially on the catalytic formation of $HCONMe_2$, where a more plausible route [7, 8] involving initial reduction of CO_2 to CO is being investigated.

References

- 1 P. Haynes, L.H. Slaugh and J.F. Kohnle, Tetrahedron Lett., (1970) 365.
- 2 T.V. Ashworth and E. Singleton, J. Chem. Soc. Chem. Commun., (1976) 204.
- 3 M.H. Chisholm and M. Extine, J. Amer. Chem. Soc., (1974) 6214.
- 4 M.H. Chisholm and M. Extine, J. Amer. Chem. Soc., (1975) 1623.
- 5 A.C. Skapski and F.A. Stephens, J. Chem. Soc. Dalton, (1974) 390; I.S. Kolomnikov, A.I. Gusev, G.G. Aleksandrov, T.S. Sobeeva, Yu.T. Struchkov and M.E. Vol'pin, J. Organometal. Chem., (1973) 349.
- 6 T.V. Ashworth, M.J. Nolte and E. Singleton, J. Chem. Soc. Dalton, (1976) in press.

8 H. Koinuma, Y. Yoshida and H. Hirai, Chem. Lett., (1975) 1223.

⁷ G.N. Schrauzer (Ed.), Transition Metals in Homogeneous Catalysis, Marcel Dekker, Inc. New York, 1971, p. 202.